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Abstract
Mathematical expressions for the London–van der Waals (vdW) interaction
energies between macroscopic objects of a few common geometrical shapes
are derived. The derivation is subjected to the assumption of additivity. The
expressions are approximated for some limiting cases. These expressions may
find uses for example in complex fluids in calculations of vdW interactions
between vesicular (single wall liposomes) and liposomal (onion structures)
particles or in colloidal suspensions for the calculation of vdW interaction
between colloids that are coated with a stabilizing layer such as adsorbed
polymers, polymer brushes or surfactants.

1. Introduction

Expressions for London–van der Waals (vdW) interaction energies between macroscopic
objects were first derived about 70 years ago, with a few simple geometries (see for example
[1–4]). Expressions for the vdW interaction energies between objects of a few geometries
are now available [5–8], yet there are still some important geometries for which an analytic
expression for the two-body vdW interaction energy is not available.

In this letter, expressions for the two-body vdW interaction are derived for a few
geometrical cases of scientific and practical importance. The following geometries are
included:

(i) Two shells: In many colloidal systems, colloids are usually coated with different polymers
or surfactants in order to stabilize suspensions (see for example [9–12]) . These coatings
form shells around the colloids and the vdW interaction from the coating shells is in many
cases a substantial or even major part of the total interaction energy in these systems.
Thus, an expression for the interaction between two shells has a practical as well as a
scientific purpose.
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(ii) Two parallel walls (of different thicknesses): Many surfaces are coated with a thin
layer that changes their wetting properties. Such layers are either made on purpose (as
Langmuir–Blodgett or self assembled monolayers [13]) or are naturally occurring surface
layers (as is the oxide layer on silicon surfaces). Such surfaces may be coated with a
liquid layer which may be either very thin (as in a dewetted surface [6]) or very thick (as
in a wetted surface). In order to quantitatively describe the interactions in such systems,
a quantitative description of the interactions between any two walls is required.

(iii) A shell and a sphere, a shell and a flat: This case may be viewed as a subdivision of
(i), and we have put it in a separate case because of its different physical interpretation.
This expression may have importance for coated colloids (as described in (i)), but here it
quantitatively describes the contributions of the core of the colloid (of one material) and
the shell of a neighbouring colloid (of another material). Additionally, it may be important
in the practical case of determining the interactions of the colloids with the wall of the
vessel which contains the dispersion.

We should note that we assume smooth surfaces, whereas surfaces (as colloidal particles or
solid substrates) are usually not smooth. Thus, as opposing rough surfaces become very close
(of order of asperities protrusions), the contribution of small asperities to the interaction energy
may become dominant and alter the force law in a way which corresponds to the geometrical
structures of the asperities. As the separation further diminishes to an atomic scale, then
the molecular conformation in the asperity should also be considered. These phenomena are
beyond the scope of this study.

2. London–van der Waals energy between two opposing shells

Two solid spherical particle of radii R1 and R2 and at a distance d apart (d is the shortest
distance between the surfaces of the particles), have a London–van der Waals attraction energy
Esphere(R1, R2, d) which is given by [4]:

Esphere(R1, R2, d) = −A

6

{
2R1R2

2(R1 + R2)d + d2
+

2R1R2

4R1R2 + 2(R1 + R2)d + d2

+ ln

[
2(R1 + R2)d + d2

4R1R2 + 2(R1 + R2)d + d2

] }
(1)

where A is the Hamaker constant. Note that an attractive energy in this study corresponds to
a positive Hamaker constant.

Consider now two non-identical solid spheres of radii R1 and R2. Let us imagine that
each sphere is composed of two parts: one part is the spherical core of radius Rj − hj where
the index j stands for the name of the sphere: 1 or 2 (see figure1(a)), and the other part is a
spherical shell of thickness hj with Rj and Rj − hj as outer and inner radii respectively.

Let: Eshell(R1, R1 − h1, R2, R2 − h2, d) ≡ EG(shell1, shell2) be the interaction energy
between the two shells. This is a function of the outer radii Rj of the shells, the inner radii
Rj −hj of the shells, and the closest distance d between the shells. We write the total interaction
between the two solid spheres of the radii R1 and R2 as:

EG(sphere1, sphere2) = EG(shell1, shell2) + EG(core1, core2)

+ EG(core1, shell2) + EG(core2, shell1) (2)

where EG(x, y) is the interaction energy between a geometrical object x and a geometrical
object y, subjected to the geometrical conditions of figure 1. For instance: EG(core1, shell2)

is a function which describes the vdW interaction energy between the spherical core of sphere
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(a)

(b)

Figure 1. (a) A cross-section of two solid spheres. The inner circle represents an imaginary
separation of the solid sphere into an outer shell and an inner core. (b) A cross-section of two
spherical shells.

1 (radius R1 − h1) and the spherical shell (R2, R2 − h2 for outer and inner radii) of sphere 2
when separated by the closest distance d + h1 apart. Similarly we can write:

EG(core1, shell2) = EG(core1, sphere2) − EG(core1, core2) (3)

and obviously the same is true if the indexes 1 and 2 are reversed.
Substituting equation (3) into equation (2) and by rearranging it we get:

EG(shell1, shell2) = EG(sphere1, sphere2) − EG(sphere1, core2)

−EG(sphere2, core1) + EG(core1, core2). (4)

And finally in the notations of equation (1) this reads:

Eshell(R1, R1 − h1, R2, R2 − h2, d) = Esphere(R1, R2, d) − Esphere(R1, R2 − h2, d + h2)

−Esphere(R2, R1 − h1, d + h1)

+Esphere(R1 − h1, R2 − h2, d + h1 + h2) (5)

and since all terms in the right-hand side of equation (5) are known from equation (1), then
equation (5) is analytic. Equation (5) describes the vdW energy between a spherical shell of
thickness h1 and external radius R1 and a spherical shell of thickness h2 and external radius
R2, when separated at the closest distance d apart.

Explicitly writing equation (5) may be redundant (and lengthy), however, approximating
for the practical case when Rj � d, hj , may give some physical insight to the way this function
varies with the different variables. This is given in equation (5a):

Eshell = − AR1R2

6 (R1 + R2)

(
1

(d + h1 + h2)
− 1

(d + h2)
− 1

(d + h1)
+

1

d

)
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−A

6
ln

[
d (d + h1 + h2)

(d + h1) (d + h2)

]
Rj � d, hj (5a)

Equations (5) and (5a) correspond to the geometry described schematically in figure 1(b).
Note that in the case when d∼ h1∼ h2, the logarithmic term in equation (5a) is negligible.

The force Fshell which corresponds to the energy Eshell is Fshell = (∂Eshell/∂d). Writing
the term for the force is straightforward (a derivative of the analytic equation (5)). To simplify
the resulting expression (which is rather lengthy) we write an approximate expression for Fshell

for the case of Rj � d, hj . We first obtain Fshell = (∂Eshell/∂d) and then neglect terms which
are small compared to 1 (e.g. d/Rj and hj/Rj or smaller). This yields:

Fshell = ∂Eshell

∂d
= − AR1R2

6 (R1 + R2)

×
(

1

d2
+

1

(d + h1 + h2)
2 − 1

(d + h1)
2 − 1

(d + h2)
2

)
Rj � d, hj (6)

The discussion of equation (6) is related to the next paragraph.

3. London–van der Waals energy between two parallel walls

Note that the expression for the force in equation (6) depends only on the geometrical average of
the radii R = R1R2/(R1 +R2). At this regime of sizes (Rj � d) the Derjaguin approximation
[3] holds, and the force over the radius corresponds to the energy per unit area EA between
two infinite planes which is readily derived in equation (7):

EA = − A

12π

(
1

d2
+

1

(d + h1 + h2)
2 − 1

(d + h1)
2 − 1

(d + h2)
2

)
. (7)

Equation (7) describes the energy per unit area between a planar wall of thickness h1 and a
planar wall of thickness h2 when separated by a distance d apart as shown in figure 2.

Figure 2. A cross-section of two parallel walls of finite thickness and infinite lateral dimensions.

There are two limiting cases to equation (7). One is the case when h = h1 = h2. This is
written in equation (8), which may also be obtained by direct integration [6].

EA = − A

12π

(
1

d2
+

1

(2h + d)2
− 2

(h + d)2

)
. (8)

This case is particularly important in the field of membrane studies [6].
The other case is when h1 → ∞, then equation (7) obtains the form of equation (9):

EA = − A

12π

(
1

d2
− 1

(d + h)2

)
. (9)
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Equation (9) describes the energy per unit area between a wall of thickness h and a semi-infinite
wall parallel to it and at a distance d apart as shown in figure 3. This expression is particularly
important in wetting studies.

Figure 3. A cross-section of two parallel walls of infinite lateral dimensions, one of finite thickness
and one of infinite thickness.

4. London–van der Waals energy between a shell and a sphere or a wall

The exact expression for a the vdW energy between a shell and a sphere was actually already
obtained in equation (3), since the ‘core’ noted there is merely a sphere of a given radius.
Writing equation (3) while substituting the word ‘core’ for the word ‘sphere’, and with the
notations of equation (1) we get:

Esphere−shell(R1, R2, R2 − h, d) = Esphere(R1, R2, d) − Esphere(R1, R2 − h, d + h) (10)

Equation (10) describes the energy between a solid sphere of radius R1 and a spherical shell
of thickness h and external radius R2, when separated by the closest distance d apart. Again
we have limiting cases: first we discuss the case where Rj � h, d . This situation corresponds
to the case shown in figure 4. In this case, by neglecting terms which are small compared to 1
(e.g. d/Rj and h/Rj or smaller), equation (10) reduces to:

E = − AR1R2

6 (R1 + R2)

(
1

d
− 1

(d + h)

)
− A

6
ln

[
d

(d + h)

]
Rj � h, d. (10a)

Note that we could have obtain this result also from equation (5a).

Figure 4. A cross-section of a solid sphere and a spherical shell.

Now we may readily obtain the case when R1 � h, d, R2, that is the energy between a
spherical shell and a semi-infinite wall (see figure 5). This is obtained again from equation (10)
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Figure 5. A cross-section of a spherical shell and a semi-infinite wall.

Figure 6. A cross-section of a solid sphere and a finite thickness wall with infinite lateral
dimensions.

by neglecting terms small compared to R1, (so R1 is no longer in the function, and R2 is written
as R) and is written in equation (11):

E = −A

6

(
R

(d + 2R)
+

h − R

(d − h + 2R)
+

h − R

(d + h)
+

R

d

)
− A

6
ln

[
d (d − h + 2R)

(d + h) (d + 2R)

]
. (11)

Equation (11) reduces to equation (11a) when R � h, d:

E = −AR

6

(
1

d
− 1

(d + h)

)
− A

6
ln

[
d

(d + h)

]
R � h, d. (11a)
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Table 1. A summary of some of the limiting cases calculated in this study.
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Equations (11) and (11a) describe the interaction energy between a small spherical shell of
external radius R and a thickness h and a semi-infinite wall.

The last case we discuss is when R2 � h, d, R1. This corresponds to the system shown
in figure 6. In this case we get the following expression from equation (10):

E = −AR

6

(
1

(d + 2R)
− 1

(d + h + 2R)
− 1

(d + h)
+

1

d

)
− A

6
ln

[
d (2R + d + h)

(d + h) (2R + d)

]
. (12)
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For the common case when R � d, h equation (12) is reduced to (12a):

E = −AR

6

(
1

d
− 1

(d + h)

)
− A

6
ln

(
d

d + h

)
R � d, h. (12a)

Equations (12) and (12a) describe the interaction energy between a wall (say a flat membrane)
of thickness h and a solid sphere of radius R, when separated at a distance d apart. These may
be important, e.g. in complex fluids when a micellar phase is in coexistence with a lamellar
one, or in some cases of a hollow fibre enzymatic reactor [14] for the interaction of a substrate
particle with an enzyme containing membrane. Comparing equations (12a) and (11a), we note
that provided R � d, h the interaction energy between a flat membrane of thickness h and
a solid sphere of radius R has the same law as the interaction energy between a semi-infinite
wall, and a spherical shell of external radius R, and a thickness h.

5. Summary

Table 1 summarizes some of the limiting cases calculated in this study. The general cases
are omitted from this table, as the corresponding relations are rather lengthy, thus all the
expressions which involve spherical objects in the table are subjected to large radii compared
to the other sizes.

I wish to thank J Klein for useful discussions and for going over the eraly stages of the
manuscript. I also acknowledge useful comments of S Safran, U Schwartz and A Weinstein
from the Weizmann Institute and P Pincus and J Israelachvili from the University of California
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